Strategies for enzyme saving during saccharification of pretreated lignocellulo-starch biomass: effect of enzyme dosage and detoxification chemicals
نویسندگان
چکیده
Two strategies leading to enzyme saving during saccharification of pretreated lignocellulo-starch biomass (LCSB) was investigated which included reducing enzyme dosage by varying their levels in enzyme cocktails and enhancing the fermentable sugar yield in enzyme-reduced systems using detoxification chemicals. Time course release of reducing sugars (RS) during 24-120 h was significantly higher when an enzyme cocktail containing full dose of cellulase (16 FPU/g cellulose) along with half dose each of xylanase (1.5 mg protein/g hemicelluloses) and Stargen (12.5 μl/g biomass) was used to saccharify conventional dilute sulphuric acid (DSA) pretreated biomass compared to a parallel system where only one-fourth the dose of the latter two enzymes was used. The reduction in RS content in the 120 h saccharified mash to the extent of 3-4 g/L compared to the system saccharified with full complement of the three enzymes could be overcome considerably by supplementing the system (half dose of two enzymes) with detoxification chemical mix incorporating Tween 20, PEG 4000 and sodium borohydride. Microwave (MW)-assisted DSA pretreated biomass on saccharification with enzyme cocktail having full dose of cellulase and half dose of Stargen along with detoxification chemicals gave significantly higher RS yield than DSA pretreated system saccharified using three enzymes. The study showed that xylanase could be eliminated during saccharification of MW-assisted DSA pretreated biomass without affecting RS yield when detoxification chemicals were also supplemented. The Saccharification Efficiency and Overall Conversion Efficiency were also high for the MW-assisted DSA pretreated biomass. Since whole slurry saccharifcation of pretreated biomass is essential to conserve fermentable sugars in LCSB saccharification, detoxification of soluble inhibitors is equally important as channelling out of insoluble lignin remaining in the residue. As one of the major factors contributing to the cost of ethanol production from LCSB is the cost of enzymes, appropriate modification of enzyme cocktail based on the composition of the pretreated biomass coupled with effective detoxification of the slurry would be a promising approach towards cost reduction.
منابع مشابه
Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification
BACKGROUND Non-productive binding of enzymes to lignin is thought to impede the saccharification efficiency of pretreated lignocellulosic biomass to fermentable sugars. Due to a lack of suitable analytical techniques that track binding of individual enzymes within complex protein mixtures and the difficulty in distinguishing the contribution of productive (binding to specific glycans) versus no...
متن کاملProduction of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood
BACKGROUND Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pr...
متن کاملA novel GH10 xylanase from Penicillium sp. accelerates saccharification of alkaline-pretreated bagasse by an enzyme from recombinant Trichoderma reesei expressing Aspergillus β-glucosidase
Background Trichoderma reesei is considered a candidate fungal enzyme producer for the economic saccharification of cellulosic biomass. However, performance of the saccharifying enzymes produced by T. reesei is insufficient. Therefore, many attempts have been made to improve its performance by heterologous protein expression. In this study, to increase the conversion efficiency of alkaline-pret...
متن کاملComparative performance of precommercial cellulases hydrolyzing pretreated corn stover
BACKGROUND Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE) is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozyme...
متن کاملXylose induces cellulase production in Thermoascus aurantiacus
Background Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust p...
متن کامل